
Automated Robotic Gardener
Wallace Borges, Seana Falvey, Denver Lau, and

Rafael Smith

Dept. of Electrical and Computer Engineering,
University of Central Florida, Orlando, Florida,

32816-2450

Abstract — The paper describes a lower budget
application of CNC design, internet applications, and
machine learning for an automated robotic gardener for
gardening enthusiasts/hobbyists. The mechanical design and
electrical components are implemented for live streaming,
drip irrigation, and motor movement. A web application
provides collected sensor data, manual control, and
chronological data tracking. A weed detection system is
described and implemented. Finally, the results and
effectiveness of these methods are discussed.
Index Terms — Electric motors, microcontrollers,

computer vision, machine learning, gardening.

I. INTRODUCTION

The Automated Robotic Gardener, or Auto-Gardener
for short, aims to reduce time used in gardening tasks,
reduce water waste, lower pesticide use, and proliferate
weed in gardens. It also helps eliminate problems
associated with transportation and pollution.
Auto-Gardener will perform regular maintenance of the
garden which includes navigating around the garden area
and performing gardening tasks. These include watering,
detecting weeds, and monitoring plant vitals. It also
provides an interface for users to monitor their garden
remotely. Auto-Gardener uses a microcontroller to fully
automate multiple gardening tasks. Once these tasks are
finished, it periodically sends activity information to the
server. It uses a drip irrigation system and weather
information to optimize the watering schedule. The system
traverses the entire garden, taking photos and sending it to
an online server to process for weed detection.

The project is geared towards both gardening novices
and enthusiasts- anyone that is interested in taking care of
their personal garden without needing to routinely manage
it. Hobby projects that currently exist are very simple and
do not have the technology that the Auto-Gardener has
such as machine learning and Web App. A possible
application could be to use for small businesses or amateur
cooks who need to grow small scale produce like herbs. It
could even be used to track any animals traveling through
the area from the live stream.

The main appealing aspect is to be in control of what
you consume. Pesticide information associated with each
produce is not readily available to the public. Even
chemicals that prolong shelf life are added to fresh
produce. Being able to harvest your food at a later time
than high-capacity farms allow the food to gain more
vitamins. Lastly, not buying food stored in plastic limits
the accidental microplastics consumed. The Automated
Robotic Gardener, through its ease of use and automated
tasks, is a step towards solving these multiple issues in the
future.

II. OVERVIEW OF THE SYSTEM COMPONENTS

The following section is an overview of the system
components chosen for the robotic gardener and how the
components are interfaced.

A. Microcontroller

The microprocessor used is the ATmega328P. It has 23
GPIO pins for the input/output purposes [1]. The
microprocessor has an internal RC oscillator running at
8.0 MHz, but an external 16 MHz oscillator is connected
for more accurate clock functions. An Arduino board and
Arduino IDE is used to program and debug the
microcontroller.

B. Raspberry Pi & Camera

The Raspberry Pi is near independent of the
microcontroller and is used to control the camera and
TCP/IP communications. This is a modification from the
original design which had the ESP-32 to control the
camera and handle WiFi communication. Issues arose
with the ESP-32 as performance and power limitations
were consistently impeding progress. The ESP-32 was
also more difficult to program and debug, due to the lack
of a development board and lack of officially supported
libraries. The ESP-32’s inability to livestream video at the
required resolution and handle TCP/IP communications is
what ultimately guaranteed the switch of hardware. The
Raspberry Pi’s superior specifications: A quad-core
1.5GHz CPU, 4GB RAM and upto 64GB SD card
memory [2], means that it can easily handle both live
streaming video and TCP/IP communications.

C. Motors and Motor Drivers

NEMA17 Motors and BIQU A4988 Motor Drivers
controlled the gantry movement. For precise positioning,
stepper motors are the best choice. As it corresponds to its
name, stepper motors move in steps. They have a
controller framework that assigns the situation through
signal pulses sent to a driver, which deciphers them and
sends corresponding voltage to the motor. Stepper motors



are moderately easy to control; however, they draw
maximum current constantly. In full step resolution mode
it took 200 microsteps for a NEMA17 motor to complete
one full rotation. These chips also have the benefit of
keeping the motors taught, preventing them from rolling
backwards or slipping on the gantry track. While running
the NEMA17 stepper motor consumes approximately 1.2
amps, and provides 3.17Kg*cm of torque.

D. Soil Moisture Sensor

The sensor used for this project is a capacitive I2C
sensor that also provides ambient light and temperature
readings built by Catnip Electronics [3]. Through testing
the soil moisture sensor reads values of: 200 for dry air,
and 300 for pure water. This gives a range of 100 integer
values as an indicator. The soil moisture sensor was
chosen for its capacitive readings, its ruggedness, its
insensitivity, and stability. Catnip Electronics sensor uses a
I2C protocol, operating at 3.3V to 5V, and consuming very
little current, 0.7 mA.

E. Ultrasonic Sensor

Ultrasonic Ranging Module HC-SR04, provided
distance measurements which were used to track the
amount of water in the water tank. The sensor is accurate
from a distance of 2cm to 400cm. Like many of the
components, the HC-SR04 needs a power supply of 5V
DC. Its trigger input pulse width is 10μs and has a
resolution of 0.3cm, a qualified choice for the design.

F. Watering

The Mountain Ark Mini Pump was a late addition to the
project, superseding the original water solenoid design
which provided only a trickle of water. This water pump
fits perfectly as a replacement since it operates off the
same voltages, 10.5 to 13.5V DC, as the solenoid. The
only difference is that the pump consumes power at 4.8
Watts.

G. Power

The power system is across the board. There are two
sources of power, for the Raspberry Pi, a 5V, 3A AC/DC
power converter and for the ATmega and its components,
a 12V, 2A AC/DC converter. This method was chosen for
ease to focus on more important aspects and goals of the
project. The motors and water pump were the only
electronics that needed a 12V supply. Hence, a power
converter from 12V to 5 V was needed for the rest. The
LM2596 was the DC/DC step down converter that fulfilled
the requirements.

III. PHYSICAL DESIGN

The team built the ACRO510 System by Open Builds.
The ACRO System provides a modular system for an
accurate positioning system. It was selected for cost
effectiveness, openly documented design, and flexibility to
place different technologies. The versatility allowed the
team to add different attachments.

The dimensions of the original ACRO510 System
design is 40 inches long by 20 inches wide. Although, the
actual work area of the motor-camera combo is only 12
inches by 30 inches, according to Open Builds . The drive
system is by GT2 timing belts. Two belts are designed on
either side of the x-axis movement, and one is designed
along the y-axis.

With the team’s addition of the Aluminum V-Slot Linear
Rails dug into the ground, the frame sits at approximately
18 inches high. Sufficient height is key to taking
exceptional pictures for the AI to make accurate decisions.
The Raspberry Pi and its accompanying camera were
rigged facing down, onto the acrylic plates of the y-axis.
The 10 feet long water pipe, coming from a 5 gallon water
bucket, was attached to the same acrylic plates. Care was
taken to point the water flow away from electronics. With
this, the motors can be moved directly above the plants to
water them individually. The water pipe arrangement was
an epiphany by the team late into the build process. A
potential future concept would be to program the system
to water based on each plants’ personal needs.

IV. SYSTEM CONCEPT

The systems are cyclic in nature, alternating between
autonomous functions and user commands. User
commands receiving priority over returning to
autonomous functions.

A. System Software Concept

The project is designed to be autonomous with the
ability to accept user input. The autonomous functions are
carried out with the locally installed electronics. These
functions include: watering, soil moisture recording and
image recording. Weed detection and weather reporting
are offloaded to the user’s personal computer on the
desktop application.

B. System Hardware Concept

The three main processors are the ATmega328, which
handles the majority of the functions, the Raspberry Pi 4
Model B, and a computer hosting as a server. Fig. 1 shows
the block diagram representation of the hardware interface
in the overall design. The arrows indicate the flow model
of the inputs and outputs. The Raspberry Pi and ATmega



transmit data by serial communication. The Raspberry Pi
and computer, which hosts the server and Web App,
communicate via the Transmission Control Protocol. The
ATmega328 within the PCB is the primary hub,
controlling 10 of the components. The Raspberry Pi had a
Wi-Fi chip and SD card that was utilized.

Fig. 1. Block diagram of the major system components. I/O
flow model is shown.

V. PRINTED CIRCUIT BOARD

With the exception of the Raspberry Pi and its camera,
the printed circuit board for this project contains all
electronics needed for this project. The major components
contained on the PCB are the 12V to 5V power converter,
motor drivers, ATmega328P microcontroller, LEDs to
signify power and operation, and transistor for pump
operation. While not every pin on the ATmega was used,
every pin is designed to be accessible on the PCB.
Consequently, extra soldering pads were added to the
design.

Most of the design is uncomplicated and does not need
to be discussed. The following are standard practice.
There is a 16MHz external clock crystal oscillator (XCO)
with a capacitor at each terminal. This is a cornerstone to
programming the microcontroller for clock dependent
electronics or programs. Two pull-up resistors are
included for the soil moisture sensor since it utilizes the
I2C serial communication protocol. The driver has an
open drain, so it needs a means of pulling the signal from
low to high. Each of the SDA and SCL signal lines has a
4.7kΩ resistor. The circuit of a TIP120 transistor, a
1N0001 diode, and 2.2k resistor shown in the top middle
area of Fig. 2 controls the water pump. The transistor
receives signals LOW or HIGH from the pin which the
base is connected to. In this design shown in Fig. 2, the
emitter had to be physically soldered to ground, as there

was a small, yet significant error. 2 LEDs indicate power
and starting program of the microcontroller. A future
design would be to add additional LEDs for indicating
power for the water pump, motors, and ultrasonic sensors.

The PCB has two layers, is 109 by 89 mm, and has a 1.6
mm thickness. The surface finish is HASL with lead, and
the copper weight is 1 oz.

Fig. 2. Printed Circuit Board Design

Lastly, the PCB was implemented to have multiple male
pin headers. This allows it to not commit to the PCB
design while permitting for complex circuits.

VI. SOFTWARE DETAIL

The software can be split into three parts, each dealing
with a major processing component: the ATmega, the
Raspberry Pi, and the desktop application. The ATmega
portion handles: motor control, soil moisture, water level
and communicates with the Raspberry Pi. The Raspberry
Pi in turn handles the camera live stream and image
capture as well as communication with the ATmega and
the user. The user’s desktop application processes images
for weed detection, pulls weather information from a third
party service and communicates with the Raspberry Pi.
The software detail of the desktop application is discussed
in a later section.
A. Microcontroller Program

The ATmega328p’s program first checks for serial
communication. The ATmega328p software logic flow is



shown in Fig. 3. This serial communication can come
from the Raspberry Pi, ultimately from the user by the
Web App, or from the check moisture function. If there
are no new commands, the motors will automatically turn
on for a Patrol Route.

The Patrol route has 10 coordinates that it moves to.
The success of the project was dependent on the stepper
motors moving correctly to the coordinates. In order to
speed up traversal times of the gantry, the software will
send a signal to move the gantry 90% of the distance
needed, with the final 10% distance covered using small
measured steps checking the limit switches to ensure the
gantry does not run out of track.

Next the moisture is checked and the loop begins again.
On the other hand, if the patrol route is paused by a user
command, it will translate the command, execute, and
send the current status. It waits for any additional
commands before it chooses to continue onto the patrol
route or pause the patrol route. The software restarts its
loop. Both automation and optional manual control are
achieved through this plan.

Fig. 3. ATmega Software System

B. Raspberry Pi Program

The Raspberry Pi considers the data from the ATmega
and the Desktop App through multi-threading. Fig. 4. was
created as a visual aid. It shows a flowchart of how the
overall program works. Through the serial communication
thread, it reads any input from the ATmega and checks for
any commands in the queue. If it is busy, it will pause.
Else, the command is sent out to the ATmega where it will
perform the command. Automatically, the camera server
will turn on at startup. The video is fed live through the
server onto the App. For the TCP/IP thread, it will check
for any new user commands from the App and will add it
to the command queue. Information is updated and the
loop restarts to check for a new user command.

As shown in both flowcharts, neither of the programs
intends to halt to a complete stop. They are intended to
keep checking for new information.

Fig. 4. Raspberry Pi Software System

C. Communications

All three of the major software components: the ATmega,
the Raspberry Pi and the desktop application communicate
information using the same format for ease of
programming. For this project both the serial
communication and TCP/IP use formatted strings for any
data sent back or forth. The slowdown caused by using
resource intensive functions like string compare or string
tokenize was considered minimal and acceptable for
having human readable messages. Through testing, the
desktop application was able to communicate through the
Raspberry Pi to the ATmega with an average time of 1.74
seconds, well beneath Auto-Gardener’s engineering
specification.

VII. COMPUTER VISION

The goal for the computer vision was to classify and
locate a majority of the weeds in the garden. This was
achieved by training an object detector on three classes,
Garden Sage (Salvia officinalis), Red Lettuce (Lactuca
sativa), and random weeds in the surrounding area. Certain
species of plants are selected so that the detector can be
trained on a variety of weed species while reducing the
chances that it detects desired plants in the garden as
weeds.

In the selection of object detector systems, accuracy and
computation cost were the most relevant factors. Between
anchor based one-stage detectors, RetinaNet, YOLO, and
SSD were considered because of comparable computation
speeds, open source architecture, and availability of
pretrained weights [5]. YOLOv4 has a higher accuracy
compared to these other real time detectors trained on the



same dataset, MS COCO-2017 with a 62.8% mean
average precision on the architecture the team
implemented [5].

YOLOv4(You Only Look Once) is composed of the
major components, the backbone, neck, and head [5]. The
image is first fed into the backbone which consists of a
convolutional neural network (CNN) CSPDarknet53, a
neck with SPP and PAN, and head YOLOv3 [5]. An input
image is fed to the backbone, which then extracts
multiple features of the image in feature maps as it passes
through the network. The neck connects and mixes feature
maps from backbone output and passes them to the head
for prediction [6]. The head draws the bounding boxes and
labels as the final output, displaying the percent
confidence and classification for each.

For the dataset selection, a synthetic dataset was created
due to lack of availability of large annotated weed datasets
for the detector to train on. 40 images of empty soil and
ground in the surrounding areas were taken and resized to
2016x1512 resolution from phone cameras at 16 inches in
height. 10 pictures of garden sage, 10 pictures of red
lettuce, and 99 images of weeds were taken using the
same methods but the resolution was maintained below
700 pixels. Each of the plant images were manually
cropped out using GIMP in order to add transparency for
image composition. Using python software, a random
portion for the background was cropped out and a
combination of 1-3 weeds, 0-2 of garden sage/red lettuce
was composed onto the image. Then additional image
augmentation was performed randomly including rotation,
flipping, brightness, and rescaling to the image to increase
variability of the dataset. For each plant foreground added,
a RGB mask was generated onto another image. Using
opencv, each different colored RGB mask was found by
detecting the largest contour of that color. Then it drew a
bounding box around it, recording the classification,
width, height, center x, center y and coordinates. These
were written to an annotation file for each image. 3000
synthetic images were generated at 992x992px for
training.

The detector was trained on a free GPU- Tesla T4 for
6000 epochs. For each epoch, the entire training dataset of
2400 images were resized to 416x416 to reduce
computation time and ran through the entire network. This
took approximately 10 hours for each version. Seven
different versions of the detector were tested. The initial
versions were used to test effectiveness at detecting weeds
and improving accuracy. Further editions contained more
cropped images of weeds. Adjustments were made such as
increasing the number of weeds per image; variations in

generated image size; applying green color segmentation
to reduce noise; adding smaller weeds; expanding
brightness ranges, increasing scaling ranges; and finally,
adding more classes to detect in order to distinguish
between desired plants and weeds. Due to computation
constraints, the effects of each of these were not clear
immediately. Adjustments such as increasing weeds to five
per image and detecting additional classes decreased the
overall accuracy of the detector. A constant indicator of
the dataset not being diverse enough was overfitting. The
detector accuracy would not increase with more training
time either due to memorizing features of the dataset.

TABLE I
Detector Training Average Precision

In the synthetic testing dataset containing 300 images,
the best detector reached a 95.10 % mean average
precision across the 3 classes as shown in Table I. The
detector had 95.27%, 96.41%, and 93.61% average
precision for Garden Sage, Red Lettuce, and weeds
respectively. These statistics were calculated assuming a
weed is correctly detected on 50% IoU, meaning the
bounding box the detector predicted overlaps with at least
50% the detected plant’s ground truth bounding box.

On real images, the detector was able to classify unseen
weeds in it’s dataset assuming similar height and weather
conditions to the dataset. Its accuracy decreased
significantly detecting plants in the garden bed. A video
was taken of the entire gardening area to give the detector
multiple angles of each plant. Out of 14 plants in the area,
the detector was able to correctly classify 9 at a certain
angle or 64.29% of the garden plants. The detector still
had trouble identifying small weeds and confused garden
sage plants for weeds at higher heights. This challenge
could be overcome by having the object detection model
customly configured to detect smaller objects or train it on
a separate class of small weed images.

Future improvements to increase detection rate and
applicability of the plant detector would be to add plants
in rain, fog, snow or other weather conditions. A specific
weed could have been identified instead of many different



species. The number of different types of plants could
have been increased in the garden at the cost of more
training time and data collection. Another possible feature
would be using a camera with zoom on possible smaller
weeds or moving on the z-axis to get an optimal height
range for detection.

VIII. WEB APP ARCHITECTURE

The motivation for the web app was to create an
interface where the user has virtual access to their garden,
real-time representation of how the garden was doing, and
on-screen controls for the device. Since the app would be
the direct link of the user to the device, the design goals
should be centered around the user’s experience and what
they would want as features. These features include: a
user-friendly and seamless design, displaying plant vitals
and sensor data in a concise way, on-screen motor and
water solenoid controls, livestream and live capture
capabilities, an interface for processing AI predictions on
captured images, tracking of activities with log, and an
option for direct communication with server. With these
features available to the user, the app would serve as a
virtual portal to their garden while also delivering the user
peace-of-mind knowing that, while the garden is being
taken care of autonomously, they still have access to
controls with on-demand commands if they wanted to
interact with their garden.

To build the app, Kivy was chosen as the framework.
Kivy is a Python-based framework, which gives it the
ability to use Python’s various extensive and powerful
libraries. Kivy also provides cross-platform functionality
by delegating graphics rendering to the cross-language,
platform-independent OpenGL API. This API is great for
displaying and handling multimedia, which was an
important feature since live streaming needs to be
implemented, as well as an interface where the user could
access the images captured. Another useful feature of
Kivy is their use of kv language. Through kv language, the
programmer is able to create a widget tree in a declarative
way, while also binding widget properties to each other or
to callbacks in a natural manner [7]. This provides kv
language with fast prototyping and complex user interface
(UI) build capabilities. Kivy also separates design logic
and design layout by using both .py and .kv files,
respectively. With the .py file handling the logic behind
the algorithms, the .kv file handles all the layout design.

The root layout of the app is a TabbedPanel, which is a
Kivy class that manages the screen by implementing tabs,
which can access different pages when clicking on them.
The tabs each have a different purpose. The first tab is the

Main Menu, providing a real-time “Garden Snapshot” by
showing current weather data, such as temperature and
humidity, as well as measurement readings for the soil
moisture and water tank levels. These can be refreshed by
pressing the “Refresh Vitals” button, which fetches
information from both an online weather API and from the
device’s own sensors. There is also a portion at the bottom
that gives friendly tips on gardening and how to better use
the device.

The next tab is the Camera tab, which focuses on live
streaming of the camera and motor movement. Since the
camera is mounted on the mobile gantry unit that is moved
by motors, controlling the camera also means being able
to control the motors. Thus, motor controls are provided in
the left-hand side of the Camera tab. The controls allow
for three methods of requesting motor movement:
1-dimensional arrow keys, buttons to jump to hard-coded
quadrants, and text boxes to enter exact coordinates. The
rest of the screen is filled with live camera feed. The feed
is accessed through the internet and rendered on the
screen. The live feed is helpful when moving the camera
around since the requested movements are reflected in the
camera’s output. Under the live feed window is a “Capture
Picture” button that saves the current frame shown at that
instant and automatically starts processing the image using
the AI weed detection functionality. With the current
processing power, the detector can run computation on any
of the 1440x1080p images from the live stream in under
10 seconds.

The next tab is naturally the Weeds tab, which provides
an interface for calling and reviewing the predictions of
the weed detection. The most recently processed image,
called a “prediction”, is displayed with the bounding
boxes and labels drawn by the AI algorithm. On the right
of the screen are stats derived from the image processing,
showing the number of weeds, garden sage, and red
lettuce found in the most recent prediction. Under the stats
section is a file-choosing widget that lets the user select a
previous prediction to display on the screen or select an
image from the operating system to run the weed detection
algorithm on.

The next tab is the Config tab, which has more user
controls and an activity log. The activity log displays all
the commands requested by the user, such as motor
controls, refreshing vitals, saving an image, etc., as well as
notifications from the server. It provides a timestamp with
each log so they can be tracked and reviewed. Along the
right-hand side of the screen are commands to clear or
export the activity log to a text file. Under that is a text
box that allows the user to enter the amount of seconds to



manually open the water solenoid for. Since the system is
able to detect water levels autonomously, this provides an
option for the user to manually influence the watering of
their garden. Under that are controls dealing with the
server, providing connect and disconnect buttons, a button
that manually retrieves current position and sensor values,
and a text box that allows the user to send specific
messages to the server, such as “PAUSE:” or “RESET:”.

The last tab is the About Us tab, which gives
information about the group members and provides a link
to the team’s GitHub to access source codes and more
information about this project.

To test the performance of the app, each specific feature
was selected and determined if they achieved the end user
goals specified earlier. All three methods of requesting a
motor command were tested individually, with the
resulting outcomes compared to the expected outcomes.
The arrow buttons activated the desired motors, moving
the camera unit in the 1-dimensional direction requested
by 400 units each press. The quadrant buttons requested
movement to specific, hard-coded coordinates, so testing
them involved measuring where the camera unit ended up
and comparing that to the expected area. The text box for
the exact coordinates were tested in a similar fashion as
the quadrant buttons - entering specific coordinates and
comparing where the camera was expected to go.

Testing the camera and image processing involved
displaying the live feed and processed images on their
respective tab displays. The live feed was tested by
moving objects in and out of the frame of the camera and
seeing if the same things would be displayed on the app.
Afterwards, the clarity of the live stream was tested by
controlling the motors to move the camera unit and testing
the clarity of the livestream generated on the app. The
capturing and AI integration were tested by taking a
picture in a controlled area, where the amount and
classification of the flora in the frame was known. The
output of that prediction was compared to what was
expected. The stats provided by the AI algorithm were
also tested and verified that they matched the findings in
the prediction image. Note, this test only verified that the
displayed stats reflected what was found by the AI
algorithm, not the actual accuracy of the weed detection;
that testing was done separately.

The representation and collection of data was also
tested. Interaction with the weather API was tested by
requesting current weather data and comparing it to other
verified sources of weather, such as the weather app on an
iPhone and the weather data found when searching online.
The collecting of values measured by the sensors were

also tested by requesting data from the server through the
“Refresh Vitals” and “Update data from Device” buttons,
as well as through the textbox sending messages to it. All
the tests proved to be successful. Ultimately, fulfilling the
end user goals is the measure of a successful application.

IX. HARDWARE TESTING

Individual tests were conducted on every electronic used
in the project. Due to potentially lengthy shipping times,
the parts received had to be tested to ensure that they were
not defective in any way. All testing of the PCB design
was built and confirmed functional on the breadboard
before manufacturing.

For the ATmega microcontrollers, a known working
Arduino development board was used to burn the
bootloader of the chip, and then upload the “PinTester”
program. The microcontroller being tested is then placed
onto a breadboard with an LED hooked up to every GPI/O
pin, which the program will set high, then low in
successive order. This ensures that the ATmegas are not
only able to be programmed but all their GPI/O pins are in
working order.

The testing performed on the ATmega microcontrollers
was also used for the ESP32 - CAM and Raspberry Pi
modules. This is where the first issue with the ESP32 -
CAM appeared as the onboard memory was extremely
difficult to flash with the testing program. Since these
modules would be handling live-streaming video and
handling TCP/IP communications, separate testing
programs were used to validate their performance. This
second test of live-streaming video caused the team to
abandon the ESP32 - CAM altogether as it was unable to
stream 30 frames per second even at a reduced resolution.
Later testing also revealed that the ESP32-CAM consumes
almost 2 amps versus the Raspberry Pi being far more
capable and only using 3.5 amps.

The first test conducted on the Nema17 stepper motors
was to hook up the wires for the two coils to an LED and
spin the motor by hand. This would cause the LED to light
up if properly connected to the ends of a single coil. This
not only ensured that the correct wires went to each coil
winding, but that there was no current leakage between
them.

After successfully testing the Nema17 motors, the A4988
motor driver chips were wired to them. Using the Arduino
development board to send the signals needed for the
Nema17 to do a full clockwise rotation, then a full
counter-clockwise rotation. The motor drivers and motors



were then shuffled around to ensure that all drivers work
with all motors.

Similarly the ultrasonic range-finders ordered were wired
up to the Arduino development board. Using a testing
program that would trigger the sensor and convert the
signal to distance in centimeters, an object was placed at a
known distance away to measure how accurate the sensors
were. The sensors were then used to measure the amount
of water, in gallons, in a bucket. Using the formula (1)
and (2), the volume of water in the bucket was estimated.

(1)

(2)

The I2C capacitive soil moisture sensor was also tested
using the Arduino development board. Using the sample
code provided by the manufacturer the team performed
four tests: moisture in air, moisture in water, moisture in
dry soil, moisture damp soil. This provided us the readout
ranges to expect in the final demo testing.

The Mountain Ark mini pump and solenoid water valve
were tested in the same manner due to time constraints, as
well as the requirement they both operated the same due to
the PCB being assembled and complete. Both devices
were simply wired to a 12 volt power supply and observed
if they turned on. In the case of the valve; the opening and
closing caused by power on, power off was audible. Both
devices were tested using a 5 gallon bucket to check water
flow, this is when the solenoid was deemed insufficient for
the project, rejected, and replaced by the mini pump.

X. CONCLUSION

One of the biggest lessons learned from this project:
don’t underestimate the importance of planning out small
details. For example: more labels etched into the PCB and
more space between wire connections would have made it
easier to assemble the board which had to be done
numerous times. Debugging was also slowed down
during the project as the microcontroller had to be
removed from the PCB in order to upload new
programming. The lack of planning for small details also
affected the software, where the addition of features
throughout the project became increasingly difficult.

Overall the Auto-Gardener team was able to accomplish
all the specifications set at the beginning of the project.
Producing a prototype auto-gardening system that is able
to water plants and identify weeds within the garden.
With the greatest successes being: controlling the
movement of the gantry through the desktop application,

and the weed detection AI working on images obtained
through the camera live stream.

REFERENCES

[1] Microchip Technology Inc.,
"ATmega48A/PA/88A/PA/168A/PA/328/P," Microchip
Technology Inc., 2020. [Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/ATm
ega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pd
f. [Accessed 28 11 2020].

[2] "Raspberry Pi 4 4GB," CanaKit, [Online]. Available:
https://www.canakit.com/raspberry-pi-4-4gb.html?cid=usd
&src=raspberrypi.

[3] Tindie inc., "I2C Soil moisture sensor", 2020. [Online].
Available:
https://www.tindie.com/products/miceuz/i2c-soil-moisture-s
ensor/ [Accessed 2020].

[4] "Motor Buyers Guide," Jamesco, [Online]. Available:
https://www.jameco.com/Jameco/workshop/ProductNews/
motor-buyers-guide.html. [Accessed 7 November 2020].

[5] C.-Y. W. H.-Y. M. L. Alexey Bochkovskiy, "YOLOv4:
Optimal Speed and Accuracy of Object Detection," 23 April
2020.

[6] J. Solawetz, "Breaking Down YOLOv4," Roboflow, 4 June
2020. [Online]. Available:
https://blog.roboflow.com/a-thorough-breakdown-of-yolov4
/.

[7] “Programming Guide » Kv language”, Kivy. [Online].
Available:
https://github.com/YingLiu4203/LearningKivy/blob/master/
Ch07%20Graphics/Graphics.md [Accessed 21 April 2021].

BIOGRAPHY

Wallace Borges is graduating with a Computer
Engineering Degree from UCF. He enjoys doing
front end UI design, as well as varied Python
implementations. After graduating, he will start
his position at Lockheed Martin as a Guidance,
Navigating, and Control Engineer Associate.

Seana Falvey is graduating with an Electrical
Engineering degree from UCF. Her interests lie in
front end UI design, gardening and hopes to
pursue a career in Power and Renewable energy.

Denver Lau is graduating with a Computer
Engineering Degree from UCF. He is currently
interested in computer vision, applications
development, and cyber security.

Rafael Smith is graduating with a Computer
Engineering Degree from UCF, spending most of
his academic career exploring backend API and
low-level hardware programming.

https://blog.roboflow.com/a-thorough-breakdown-of-yolov4/
https://blog.roboflow.com/a-thorough-breakdown-of-yolov4/
https://github.com/YingLiu4203/LearningKivy/blob/master/Ch07%20Graphics/Graphics.md
https://github.com/YingLiu4203/LearningKivy/blob/master/Ch07%20Graphics/Graphics.md

